And the next American Idol is ___________________________!

1. Why are polynomials used to approximate other, more complicated functions?

2. What is the degree of the polynomial \(f(x) = 3x + 5 - 7x^3 + 3x^2 \)? ____________

3. Every polynomial is ____________, meaning the graph has no sharp corners or cusps, and is continuous, meaning the graph has no gaps or holes.

4. Fill in the properties of the power function \(f(x) = ax^n \).

\[
\begin{array}{c|c}
 n \text{ even} & n \text{ odd} \\
\hline
\text{Symmetric with respect to the } & \text{Symmetric with respect to the } \\
\text{Domain } & \text{Domain } \\
\text{Graph always contains the points } & \text{Graph always contains the points } \\
& \\
& \\
& , and \\
& , and \\
\end{array}
\]

5. True or False: If \(r \) is a root of \(f \), then \((r,0)\) is an \(x \)-intercept of \(f \).

6. If \((x - r)^m\) is a factor of a polynomial \(f \) and \((x - r)^{m+1}\) is not a factor of \(f \), then \(r \) is called a zero of ____________ of \(f \).

7. True or False: If \(m \) is even, \((x - r)^m\) is a factor of \(f \) and \((x - r)^{m+1}\) is not a factor of \(f \), then the graph of \(f \) crosses the \(x \)-axis at \(x = r \).

8. At most how many turning points does the polynomial \(f(x) = 5x^7 + 6x^4 - 9x^2 + 3x - 1 \) have? ____________

9. For large \(|x| \), what power function does \(f(x) = 5x^7 + 6x^4 - 9x^2 + 3x - 1 \) resemble? ____________